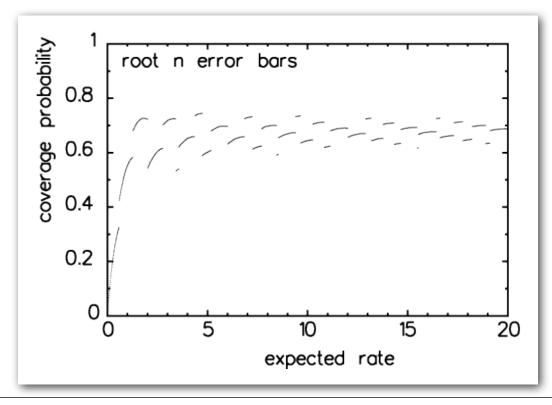
Intervals and Coverage

Physics 252C - Lecture 7
Prof. John Conway

coverage

- basic question: how often is the true value within the 1-sigma error bars?
- example: Poisson-distributed numbers
- use \sqrt{n} error bars

what are the strange jumps?



jumps in coverage

- discrete nature of Poisson distribution causes jumps
- expected number µ is continuous
- only possible outcomes are integers: 0, 1, 2, ...
- for each integer outcome there is a given error which is the square root of that integer
- we only count that integer outcome's probability toward the coverage if it is within 1 σ of μ
- coverage probability is sum of individual outcome probabilities which are within 1 σ of μ

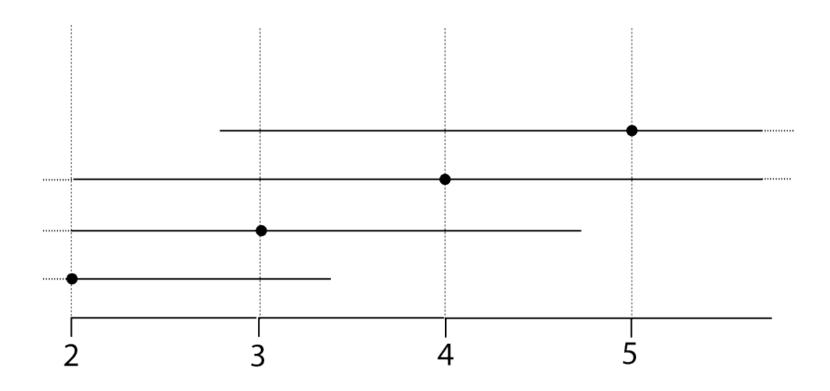
code for coverage

• simple to calculate coverage:

```
for( int i = 0; i < 1000; i++)
  x = 0.01 * i;
  p = 0.;
  for(int n = 0; n < 40; n++)
     double xn = n;
     s = sqrt(xn);
     if(fabs(xn-x) < s) p = p + poiss_prob(x,n);
   cout << x << " " << p << endl;
```

graphical attempt at explanation of jumps

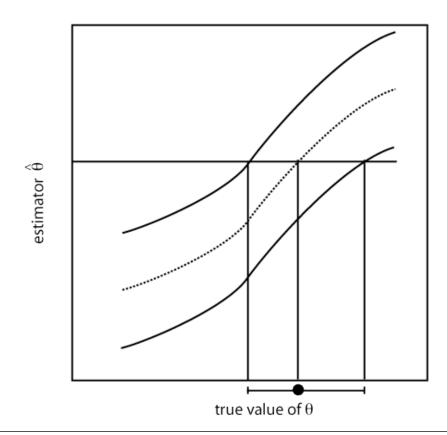
• as μ increases, can suddenly add a new integer outcome's probability, or drop one...



why do we care about coverage?

- we wish to estimate the values of parameters
- in addition we specify a range in which the true value might lie: the <u>uncertainty</u> in the parameter
- we can alternatively (or equivalently) quote a confidence interval
- typically we demand that a confidence interval contain the true value with some known probability, like 68.27% or 95%
- as we now see, this can be problematic in the region of small statistics ("Poisson regime")
- coverage is a manifestly frequentist concept!

- relatively recent 1937!
- the idea is that we may not know the true value of our parameter θ , but if we do know what the distribution of our estimator is, we can construct a "confidence belt"

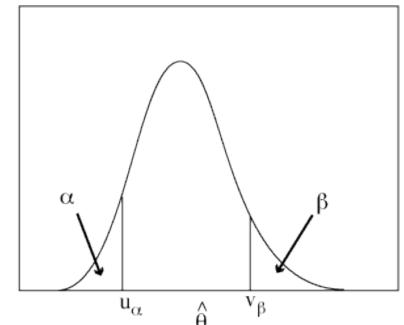


using distribution of estimator, take slice through belt to determine interval

• consider vertical "slice" through belt; described by distribution $g(\hat{ heta}; heta)$

$$\mathcal{P}(\hat{\theta} < u_{\alpha}; \theta) = \alpha$$
 $\mathcal{P}(\hat{\theta} < v_{\beta}; \theta) = \beta$

$$\mathcal{P}(u_{\alpha} < \hat{\theta} < v_{\beta}) = 1 - \alpha - \beta$$



next find inverses:

$$a(\hat{\theta}) = u_{\alpha}^{-1}(\hat{\theta})$$
$$b(\hat{\theta}) = v_{\beta}^{-1}(\hat{\theta})$$

 then, the key to understanding the Neyman construction is this:

$$\hat{\theta} \ge u_{\alpha}(\theta) \quad \Rightarrow \quad a(\hat{\theta}) \ge \theta$$

$$\hat{\theta} \le v_{\beta}(\theta) \quad \Rightarrow \quad b(\hat{\theta}) \le \theta$$

• therefore the probabilities are the same

$$\mathcal{P}(a(\hat{\theta}) \ge \theta) = \alpha$$

 $\mathcal{P}(b(\hat{\theta}) \le \theta) = \beta$

and thus

$$\mathcal{P}(a(\hat{\theta}) \le \theta \le b(\hat{\theta})) = 1 - \alpha - \beta$$

we call the region

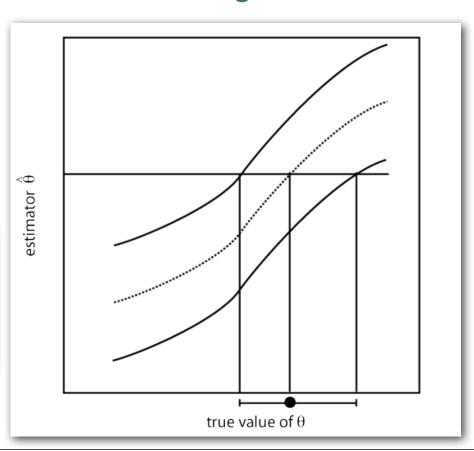
$$a(\hat{\theta}) \le \theta \le b(\hat{\theta})$$

the confidence interval for the true value of θ given the

estimator (and its pdf)

the <u>confidence level</u> is the coverage probability, equal to 1-α-β

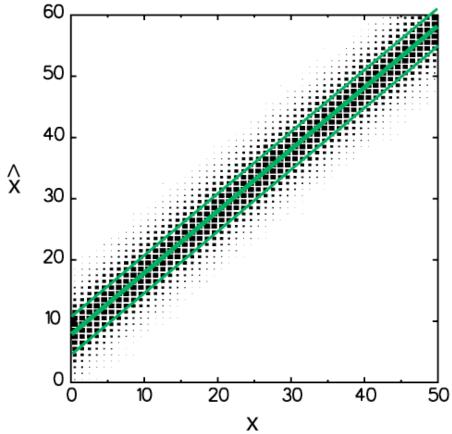
this is <u>the</u> frequentist approach to setting confidence intervals



- how do we perform the Neyman construction?
 - <u>analytic calculation</u>: clearly requires full knowledge of estimator pdf, integrability, and invertibility
 - Monte Carlo: scan in θ , estimate the u_{α} and v_{β} points for desired α and β numerically, interpolate to get inverse functions
- in the vast majority of cases we construct Neyman bands via a MC technique
- $\alpha = \beta$ corresponds to <u>central interval</u>
- (are these always sensible??)

example: Gaussian numbers

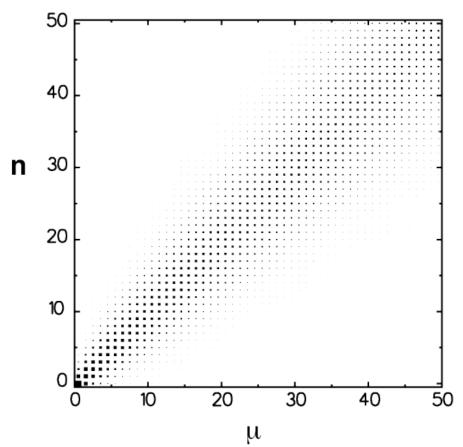
plot estimator for x versus x



• this is a biased estimator! (which can be okay in this formulation...)

bad example: Poisson numbers

• generate Poisson-distributed random numbers for values of μ in the range (0,50)



• bad example because cannot draw confidence belt as smooth function! (u_{α} and v_{β} jump!)

confidence belts for discrete distributions

- must decide on desired coverage properties
 - always over-cover?
 - minimally over-cover?
 - average coverage?
- these are some of the toughest practical problems to deal with in statistical data analysis
- problem is "interesting" near zero...discuss
- physical boundaries in general represent problems for setting intervals

One sided intervals (limits)

we may wish to make a statement such as

$$\mathcal{P}(\theta < \theta_{95}; \hat{\theta}) > 95\%$$

- in this case θ_{95} is a 95% CL upper limit on θ
- this represents a one-sided interval
- the statement itself is manifestly Bayesian!
- a frequentist would say "given any value of $\theta > \theta_{95}$, there is less than a 5% chance of having observed the value of θ we did, or less"

$$\mathcal{P}(\hat{\theta} < \hat{\theta}_{obs}; \theta) < 5\% \quad \forall \ \theta > \theta_{95}$$

Frequentist one-sided intervals

- readily done using Neyman construction: simply consider only the high tail of the distribution of the estimator; require $\beta = 1 \gamma$ for desired confidence γ
- limits suffer from same discreteness problems in the Poisson regime
- simple cases can be calculated directly
- example: upper limit on µ for Poisson process given n observed events

$$\sum_{n=0}^{n_{obs}} \frac{\mu_{95}^n e^{-\mu_{95}}}{n!} = 0.05$$

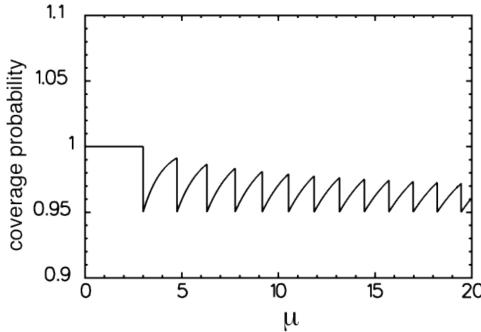
A few values for upper limits

• not bad to memorize the first few...

n _{obs}	90% CL	95% CL
0	2.30	3.00
I	3.89	4.74
2	5.32	6.30
3	6.68	7.75

coverage for upper limit on Poisson process

 "dinosaur plot" of coverage for upper limit on Poisson process:



- flat, unity near zero: why?
- why the jumps?
- overcoverage reflects > sign in calculation

Poisson process with background

- next most complicated limit problem: expect some background with rate b
- consider large n, b first Gaussian approximation
 - 95% CL limit is at $s > 1.96\sqrt{s}$
 - this explains why we optimize s/\sqrt{b} for limits
- what about Poisson regime?
- great deal of history in our field with this problem
- "PDG formula": limit is at that value of the signal where we would have observed $\leq n_{obs}$ and have $n_{bkg} \leq n_{obs}$, all with probability 1- γ

PDG formula

$$\frac{\sum_{j=0}^{n_{obs}} (s+b)^{j} e^{-(s+b)}/j!}{\sum_{j=0}^{n_{obs}} b^{j} e^{-b}/j!} < 0.05$$

- this formula was in the 1988-1996 Review of Particle Properties Review of Statistics (not the PDG!)
- remarkably it was derived independently using a Bayesian approach by O. Helene in 1983:

O. Helene, Nucl. Intrum. Methods Phys. Res. A 212, 319 (1983)

- now generally known as the Helene formula
- evades non-physical (negative) limits