Hadron Collisions and the LHC

TASI 2006 - Lecture 1 John Conway

If you ask me anything I don't know, I'm not going to answer.

- Yogi Berra

Actually, this is probably not true...Male Answer Syndrome... but there is a <u>lot</u> I do not know about this topic! :)

A. Overview of the LHC Program
B. Anatomy of a Hadron Collision
C. PDFs and Q² Evolution
D. Hard Collision Processes
E. LHC Machine Design and Operation

The LHC Program

- In 1976, Burt Richter, visiting CERN, designed a large 200 GeV electron position collider: LEP
- He envisioned that come day the concrete/steel LEP magnets could be replaced with SC ones
- Collide protons: more energy!
 - huge cost
 - "dirty" collisions
 - enormous rates
- The lesson: once you have the tunnel...

Site of the LHC near Geneva, Switzerland

LHC Physics: Questions

- Why are there three generations?
- Are the quark generations related to the lepton ones?
- Why is there a huge range of particle masses?
- What is the nature of electroweak symmetry breaking?
- Is there a Higgs boson at ~120 GeV?
- Are there supersymmetric partners to be found?
- What is the particle nature of dark matter?
- What is the Lagrangian of the world?

The Billion-Dollar Plot

$$\begin{split} \mathcal{L}_{GWS} &= \sum_{f} (\bar{\Psi}_{f} (i\gamma^{\mu} \partial \mu - m_{f}) \Psi_{f} - eQ_{f} \bar{\Psi}_{f} \gamma^{\mu} \Psi_{f} A_{\mu}) + \\ &+ \frac{g}{\sqrt{2}} \sum_{i} (\bar{a}_{L}^{i} \gamma^{\mu} b_{L}^{i} W_{\mu}^{+} + \bar{b}_{L}^{i} \gamma^{\mu} a_{L}^{i} W_{\mu}^{-}) + \frac{g}{2c_{w}} \sum_{f} \bar{\Psi}_{f} \gamma^{\mu} (I_{f}^{3} - 2s_{w}^{2} Q_{f} - I_{f}^{3} \gamma_{5}) \Psi_{f} Z_{\mu} + \\ &- \frac{1}{4} |\partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} - ie(W_{\mu}^{-} W_{\nu}^{+} - W_{\mu}^{+} W_{\nu}^{-})|^{2} - \frac{1}{2} |\partial_{\mu} W_{\nu}^{+} - \partial_{\nu} W_{\mu}^{+} + \\ &- ie(W_{\mu}^{+} A_{\nu} - W_{\nu}^{+} A_{\mu}) + ig' c_{w} (W_{\mu}^{+} Z_{\nu} - W_{\nu}^{+} Z_{\mu}|^{2} + \\ &- \frac{1}{4} |\partial_{\mu} Z_{\nu} - \partial_{\nu} Z_{\mu} + ig' c_{w} (W_{\mu}^{-} W_{\nu}^{+} - W_{\mu}^{+} W_{\nu}^{-})|^{2} + \\ &- \frac{1}{2} M_{\eta}^{2} \eta^{2} - \frac{g M_{\eta}^{2}}{8M_{W}} \eta^{3} - \frac{g'^{2} M_{\eta}^{2}}{32M_{W}} \eta^{4} + |M_{W} W_{\mu}^{+} + \frac{g}{2} \eta W_{\mu}^{+}|^{2} + \\ &+ \frac{1}{2} |\partial_{\mu} \eta + iM_{Z} Z_{\mu} + \frac{ig}{2c_{w}} \eta Z_{\mu}|^{2} - \sum_{f} \frac{g}{2} \frac{m_{f}}{M_{W}} \bar{\Psi}_{f} \Psi_{f} \eta \end{split}$$

Is this the theory of everything? Probably not...

PDFs and Q² Evolution

- PDF parton distribution function
- measured in many experiments
- evolve with Q² described by DGLAP equations
- functional fits: MRS and CTEQ groups
- uncertainties mean we cannot predict wellunderstood processes perfectly!
- extrapolation to LHC cross section calculations can vary a lot!

PDFs and Q² Evolution

ad hoc functional form used in fit:

$$f_q(x,Q_0) = Ax^{\alpha}(1-x)^{\beta}e^{\gamma x}(1+Bx)^{\delta}$$

- Q_o = 1.3 GeV (evolve from that)
- light quarks are treated as massless
- use input from neutrino DIS experiments, HERA ep scattering, Tevatron
- Q² evolution softens the distributions

- falling continuum distribution as a function of mass, plus Z resonance
- analogous expression for W production
- antiquarks are non-valence ("sea") quarks!

The Underlying Event

- color strings breaking lead to a sort of cloud of soft mesons in the events
- we often think in terms of the underlying event actually <u>being</u> a min-bias event accompanying the hard collision (or vice versa)
- rule of thumb: number of particles per unit of pseudorapidity is roughly constant...but at what?

Moraes, Buttar, and Clements ATL-PHYS-PUB-2005-15

ΔR

 We tend, at hadron colliders, to use ∆R as a measure of "distance" or separation in direction between particles

$$\Delta R \equiv \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$$

 here φ is the azimuthal angle around the beam direction, and the pseudorapidity η is related to the polar angle by

$$\eta \equiv -\log\left(\tan\frac{\theta}{2}\right)$$

Is ΔR the right thing?

- Typical applications of ΔR cones include
 - lepton isolation (e.g. e isolation in $W \rightarrow ev$)
 - jet reconstruction
 - tau reconstruction $(\tau \rightarrow h\nu)$
- Is it desirable to use ΔR in any or all of these cases?
- let's look at some actual (well, simulated) 14 TeV pp collisions...

The LHC Machine

- 27 km circumference
- 100-150 m underground
- dipole bend radius ~ 2.8 km
- SC dipole field ~8.4 Tesla
- 1232 dipoles (14.3 m length)
- 2-in-1 "cosθ" design
- plane of machine tilted at 1.4° (Jura)
- eightfold symmetry
- four experiments: ATLAS, CMS, ALICE, LHC-B

LHC bunch structure

- machine frequency = c/26659 m = 11.25 kHz
- 88.9 µs per turn
- design: 24.95 ns bunch spacing
- 2808 bunches maximum due to abort/injection gaps
- initially: 75 ns bunch spacing (936x936 bunches)
- later: 25 ns bunch spacing
- bunch length?

Strong Focusing

- want beam bunches as small (dense!) as possible in all three dimensions
- quadrupole magnets interspersed among dipoles

Beta and Tune

- betatron oscillations: departure of particle from nominal orbit path β_x and β_y
- betatron oscillations decrease with beam energy
- betatron oscillations excited by machine imperfections
- want minimal x-y coupling in betatron oscillations
- want number of betatron oscillations per turn (the "tune") in machine to be <u>non-integer</u>
- interaction region: "low-beta insertion" in straight section
- trade angular spread for IP size!

http://lhc-new-homepage.web.cern.ch/lhc-new-homepage/DashBoard/index.asp

Dipole storage before installation

Dipole installation in tunnel

Birth of The LHC

- date of "first beam" has long been July 1, 2007
- this could mean
 - vacuum in beam pipe
 - one bunch circulating at low energy
 - no collisions
- recent change: moved to November, 2007
- initial energy: 0.9 TeV (435 GeV beam energy)
- first real physics running in 2008

Prediction is very difficult, especially about the future.

- Niels Bohr

Breakdown of a normal year

LHC Daily Operations

from Lyn Evans, LHCC report, March 2006

Other random LHC facts

- bunch length: 8 cm
- crossing angle: 285 µrad
- stored energy, per beam: 300 MJ (150 sticks dynamite)
- interactions per crossing at 10³³: 2.1
- operating temperature: 1.9 K
- power consumption: 120 MW

SuperLHC

- after ~500 fb⁻¹ (roughly 2012-13?) the experiments will require major upgrades
 - radiation damage to inner detectors
 - improved readout
 - improved triggering
- major upgrade for accelerator too!
- goal for SuperLHC: 10³⁵ cm⁻² s⁻¹

				SLHC
parameter	symbol	nominal LHC	ultimate LHC	shorter bunches
#bunches	пь	2808	2808	5616
protons/bunch	$N_b [10^{11}]$	1.15	1.7	17
bunch spacing	Δt_{sep} [ns]	25	25	12.5 verv diffi
average current	[[A]	0.58	0.86	1.72
norm. transv. emittance	ε _n [μm]	3.75	3.75	3.75
longit. profile		Gaussian	Gaussian	Gaussian
rms b. length	σ_{z} [em]	7.55	7.55	3.78
beta at IP1&IP5	β^* [m]	0.55	0.5	0.25
crossing angle	$\theta_{\rm c}$ [µrad]	285	315	445
Piwinski parameter	$\theta_{c}\sigma_{z'}(\sigma^{*})$	0.64	0.75	0.75
luminosity	$L [10^{34}]$ cm ⁻² s ⁻¹]	1.0	2.3	9.2
cvents/ crossing		19	44	88
length luminous	σ_{lum}	44.9	42.8	21,8
region (rms)	[mm]			

